Hypothesis: HR 23:

\((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\).

Conclusion: HR 29:  If \(|S| = \aleph_{0}\) and \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets and \(|A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup^{}_{x\in S} A_{x}| = |\bigcup^{}_{x\in S} B_{x}|\). Moore, G. [1982], p 324.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N39\) Howard's Model II \(A\) is denumerable and is a disjoint union\(\bigcup_{i\in\omega}B_i\cup\bigcup_{i\in\omega}C_i\), where for all\(i\in\omega, |B_i|=|C_i|=\aleph_0\)

Code: 5

Comments:


Edit | Back