Hypothesis: HR 333:
\(MC(\infty,\infty,\mathrm{odd})\): For every set \(X\) of sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\) and \(|f(x)|\) is odd.
Conclusion: HR 250:
\((\forall n\in\omega-\{0,1\})(C(WO,n))\): For every natural number \(n\ge 2\), every well ordered family of \(n\) element sets has a choice function.
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2^*(3)\) Howard's variation of \(\cal N2(3)\) | \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\) |
Code: 5
Comments: