Hypothesis: HR 337:

\(C(WO\), uniformly linearly ordered):  If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\).

Conclusion: HR 288-n:

If \(n\in\omega-\{0,1\}\), \(C(\aleph_0,n)\): Every denumerable set of \(n\)-element sets has a choice function.

List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N2(n)\) A generalization of \(\cal N2\) This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\)
\(\cal N2^*(3)\) Howard's variation of \(\cal N2(3)\) \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\)

Code: 5

Comments:


Edit | Back