This non-implication, Form 309 \( \not \Rightarrow \) Form 118, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9695, whose string of implications is:
    91 \(\Rightarrow\) 309
  • A proven non-implication whose code is 5. In this case, it's Code 3: 200, Form 91 \( \not \Rightarrow \) Form 118 whose summary information is:
    Hypothesis Statement
    Form 91 <p> \(PW\):  The power set of a well ordered set can be well ordered. </p>

    Conclusion Statement
    Form 118 <p> Every linearly orderable topological space is normal.  <a href="/books/28">Birkhoff [1967]</a>, p 241. </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 309 \( \not \Rightarrow \) Form 118 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N2(\hbox{LO})\) van Douwen's Model This model is another variationof \(\cal N2\)
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N5\) The Mathias/Pincus Model II (an extension of \(\cal N4\)) \(A\) iscountably infinite; \(\precsim\) and \(\le\) are universal homogeneous partialand linear orderings, respectively, on \(A\), (See <a href="/articles/Jech-1973b">Jech [1973b]</a>p101 for definitions.); \(\cal G\) is the group of all order automorphismson \((A,\precsim,\le)\); and \(S\) is the set of all finite subsets of \(A\)
\(\cal N19(\precsim)\) Tsukada's Model Let \((P,\precsim)\) be a partiallyordered set that is not well ordered; Let \(Q\) be a countably infinite set,disjoint from \(P\); and let \(I=P\cup Q\)
\(\cal N29\) Dawson/Howard Model Let \(A=\bigcup\{B_n; n\in\omega\}\) is a disjoint union, where each \(B_n\) is denumerable and ordered like the rationals by \(\le_n\)
\(\cal N38\) Howard/Rubin Model I Let \((A,\le)\) be an ordered set of atomswhich is order isomorphic to \({\Bbb Q}^\omega\), the set of all functionsfrom \(\omega\) into \(\Bbb Q\) ordered by the lexicographic ordering
\(\cal N40\) Howard/Rubin Model II A variation of \(\cal N38\)
\(\cal N48\) Pincus' Model XI \(\cal A=(A,<,C_0,C_1,\dots)\) is called an<em>ordered colored set</em> (OC set) if \(<\) is a linear ordering on \(A\)and the \(C_i\), for \(i\in\omega\) are subsets of \(A\) such that for each\(a\in A\) there is exactly one \(n\in\omega\) such that \(a\in C_n\)
\(\cal N52\) Felgner/Truss Model Let \((\cal B,\prec)\) be a countableuniversal homogeneous linearly ordered Boolean algebra, (i.e., \(<\) is alinear ordering extending the Boolean partial ordering on \(B\))

Edit | Back