This non-implication, Form 309 \( \not \Rightarrow \) Form 347, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9695, whose string of implications is:
    91 \(\Rightarrow\) 309
  • A proven non-implication whose code is 5. In this case, it's Code 3: 233, Form 91 \( \not \Rightarrow \) Form 322 whose summary information is:
    Hypothesis Statement
    Form 91 <p> \(PW\):  The power set of a well ordered set can be well ordered. </p>

    Conclusion Statement
    Form 322 <p> \(KW(WO,\infty)\), <strong>The Kinna-Wagner Selection Principle for a well ordered family of sets:</strong> For every  well ordered set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See <a href="/form-classes/howard-rubin-15">Form 15</a>). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 3279, whose string of implications is:
    347 \(\Rightarrow\) 40 \(\Rightarrow\) 322

The conclusion Form 309 \( \not \Rightarrow \) Form 347 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N2\) The Second Fraenkel Model The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \).
\(\cal N2(n)\) A generalization of \(\cal N2\) This is a generalization of\(\cal N2\) in which there is a denumerable set of \(n\) element sets for\(n\in\omega - \{0,1\}\)
\(\cal N2^*(3)\) Howard's variation of \(\cal N2(3)\) \(A=\bigcup B\), where\(B\) is a set of pairwise disjoint 3 element sets, \(T_i = \{a_i, b_i,c_i\}\)
\(\cal N2(n,M)\) Mostowski's variation of \(\cal N2(n)\) \(A\), \(B\), and \(S\)are the same as in \(\cal N2(n)\)
\(\cal N2(\aleph_{\alpha})\) Jech's Model This is an extension of \(\cal N2\) in which \(A=\{a_{\gamma} : \gamma\in\omega_{\alpha}\}\); \(B\) is the corresponding set of \(\aleph_{\alpha}\) pairs of elements of \(A\); \(\cal G\)is the group of all permutations on \(A\) that leave \(B\) point-wise fixed;and \(S\) is the set of all subsets of \(A\) of cardinality less than\(\aleph_{\alpha}\)
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N6\) Levy's Model I \(A=\{a_n : n\in\omega\}\) and \(A = \bigcup \{P_n: n\in\omega\}\), where \(P_0 = \{a_0\}\), \(P_1 = \{a_1,a_2\}\), \(P_2 =\{a_3,a_4,a_5\}\), \(P_3 = \{a_6,a_7,a_8,a_9,a_{10}\}\), \(\cdots\); in generalfor \(n>0\), \(|P_n| = p_n\), where \(p_n\) is the \(n\)th prime
\(\cal N15\) Brunner/Howard Model I \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\)
\(\cal N22(p)\) Makowski/Wi\'sniewski/Mostowski Model (Where \(p\) is aprime) Let \(A=\bigcup\{A_i: i\in\omega\}\) where The \(A_i\)'s are pairwisedisjoint and each has cardinality \(p\)
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)
\(\cal N43\) Brunner's Model II The set of atoms \(A=\bigcup\{P_n: n\in\omega\}\), where \(|P_n|=n+1\) for each \(n\in\omega\) and the \(P_n\)'s arepairwise disjoint
\(\cal N49\) De la Cruz/Di Prisco Model Let \(A = \{ a(i,p) : i\in\omega\land p\in {\Bbb Q}/{\Bbb Z} \}\)

Edit | Back