This non-implication, Form 379 \( \not \Rightarrow \) Form 200, whose code is 6, is constructed around a proven non-implication as follows:

  • This non-implication was constructed without the use of this first code 2/1 implication.
  • A proven non-implication whose code is 5. In this case, it's Code 3: 731, Form 379 \( \not \Rightarrow \) Form 200 whose summary information is:
    Hypothesis Statement
    Form 379 <p> \(PKW(\infty,\infty,\infty)\): For every infinite family \(X\) of sets each of which has at least two elements, there is an infinite subfamily \(Y\) of \(X\) and a function \(f\) such that for all \(y\in Y\), \(f(y)\) is a non-empty proper subset of \(y\). </p>

    Conclusion Statement
    Form 200 <p> For all infinite \(x\), \(|2^{x}| = |x!|\). </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 379 \( \not \Rightarrow \) Form 200 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N1\) The Basic Fraenkel Model The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\)
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)

Edit | Back