This non-implication, Form 415 \( \not \Rightarrow \) Form 163, whose code is 6, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9668, whose string of implications is:
    144 \(\Rightarrow\) 415
  • A proven non-implication whose code is 5. In this case, it's Code 3: 410, Form 144 \( \not \Rightarrow \) Form 163 whose summary information is:
    Hypothesis Statement
    Form 144 <p> Every set is almost well orderable. </p>

    Conclusion Statement
    Form 163 <p> Every non-well-orderable set has an infinite, Dedekind finite subset. </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 415 \( \not \Rightarrow \) Form 163 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N2\) The Second Fraenkel Model The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \).
\(\cal N14\) Morris/Jech Model \(A = \bigcup\{A_{\alpha}: \alpha <\omega_1\}\), where the \(A_{\alpha}\)'s are pairwise disjoint, each iscountably infinite, and each is ordered like the rationals; \(\cal G\) isthe group of all permutations on \(A\) that leave each \(A_{\alpha}\) fixedand preserve the ordering on each \(A_{\alpha}\); and \(S = \{B_{\gamma}:\gamma < \omega_1\}\), where \(B_{\gamma}= \bigcup\{A_{\alpha}: \alpha <\gamma\}\)
\(\cal N15\) Brunner/Howard Model I \(A=\{a_{i,\alpha}: i\in\omega\wedge\alpha\in\omega_1\}\)
\(\cal N17\) Brunner/Howard Model II \(A=\{a_{\alpha,i}:\alpha\in\omega_1\,\wedge i\in\omega\}\)
\(\cal N18\) Howard's Model I Let \(B= {B_n: n\in\omega}\) where the \(B_n\)'sare pairwise disjoint and each is countably infinite and let \(A=\bigcup B\)
\(\cal N36(\beta)\) Brunner/Howard Model III This model is a modificationof \(\cal N15\)
\(\cal N41\) Another variation of \(\cal N3\) \(A=\bigcup\{B_n; n\in\omega\}\)is a disjoint union, where each \(B_n\) is denumerable and ordered like therationals by \(\le_n\)

Edit | Back