Form equivalence class Howard-Rubin Number: 14

Statement:  Let \(\frak A\)  and \(\frak B\)  be (universal)algebras of type \(r\) where  \(\frak A\) and \(\frak B\)  have underlyingsets  \(A\)  and \(B\)  respectively  and \(B\)  is finite.  Suppose forevery finite \(C \subseteq  A\) there is  a  partial \(r\) homomorphismfrom \(\frak A\) into \(\frak B\) with domain \(C\).  Then there is  an \(r\)homomorphism from \(\frak A\) into \(\frak B\) . van Benthem [1975].

Howard-Rubin number: 14 AS

Citations (articles):

Connections (notes):

References (books):

Back