Form equivalence class Howard-Rubin Number: 89

Statement:

If \(\forall y\in X\), \(y = \langle u,R\rangle\) where \(R\) is a partial order on \(u\) then there is a function \(f\) on \(X\) such that \(\forall\langle u,R\rangle\in X\), \(f(\langle u,R\rangle)\) is a maximal antichain in \(u\).

Howard-Rubin number: 89 A

Citations (articles): Felgner [1969] Die Existenz wohlgenordneter konfinaler Teilmengen in Ketten und das Aus-wahl-axiom
Harper/Rubin [1976] Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II

Connections (notes):

References (books):

Back