Form equivalence class Howard-Rubin Number: 89
Statement:
If \(\forall y\in X\), \(y = \langle u,R\rangle\) where \(R\) is a partial order on \(u\) then there is a function \(f\) on \(X\) such that \(\forall\langle u,R\rangle\in X\), \(f(\langle u,R\rangle)\) is a maximal antichain in \(u\).
Howard-Rubin number: 89 A
Citations (articles):
Felgner [1969]
Die Existenz wohlgenordneter konfinaler Teilmengen in Ketten und das Aus-wahl-axiom
Harper/Rubin [1976]
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II
Connections (notes):
References (books):
Back