Statement:

If \(X\) is a \(T_2\) space with at least two points and \(X^{Y}\) is hereditarily metacompact then \(Y\) is  countable. (A space is metacompact if every open cover has an open point finite refinement. If \(B\) and \(B'\) are covers of a space \(X\), then \(B'\) is a refinement of \(B\) if \((\forall x\in B')(\exists y\in B)(x\subseteq y)\). \(B\) is point finite if \((\forall t\in X)\) there are only finitely many \(x\in B\) such that \(t\in x\).) van Douwen [1980]

Howard_Rubin_Number: 135

Parameter(s): This form does not depend on parameters

This form's transferability is: Unknown

This form's negation transferability is: Negation Transferable

Article Citations:

Book references

Note connections:

The following forms are listed as conclusions of this form class in rfb1: 76, 292, 39, 41, 53, 69, 45-n, 64, 67, 111, 122, 126, 128, 146, 177, 200, 267, 323, 327, 344, 390, 278, 106,

Back