Fraenkel \(\cal N25\): Brunner's Model I | Back to this models page

Description: The set of atoms, \(A\), is equipped with thestructure of the Hilbert space \(\ell_2\), \(\cal G\) is the group of allpermutations on \(A\) that preserve the norm (unitary operators), and \(S\) isthe set of all finite subsets of \(A\)

When the book was first being written, only the following form classes were known to be true in this model:

Form Howard-Rubin Number Statement
6

\(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable  family  of denumerable subsets of \({\Bbb R}\) is denumerable.

37

Lebesgue measure is countably additive.

91

\(PW\):  The power set of a well ordered set can be well ordered.

130

\({\cal P}(\Bbb R)\) is well orderable.

191

\(SVC\): There is a set \(S\) such that for every set \(a\), there is an ordinal \(\alpha\) and a function from \(S\times\alpha\) onto \(a\).

273

There is a subset of \({\Bbb R}\) which is not Borel.

305

There are \(2^{\aleph_0}\) Vitali equivalence classes. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in{\Bbb Q})(x-y=q)\).). \ac{Kanovei} \cite{1991}.

309

The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).

313

\(\Bbb Z\) (the set of integers under addition) is amenable.  (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).)

361

In \(\Bbb R\), the union of a denumerable number of analytic sets is analytic. G. Moore [1982], pp 181 and 325.

363

There are exactly \(2^{\aleph_0}\) Borel sets in \(\Bbb R\). G. Moore [1982], p 325.

368

The set of all denumerable subsets of \(\Bbb R\) has power \(2^{\aleph_0}\).

369

If \(\Bbb R\) is partitioned into two sets, at least one of them has cardinality \(2^{\aleph_0}\).

When the book was first being written, only the following form classes were known to be false in this model:

Form Howard-Rubin Number Statement
15

\(KW(\infty,\infty)\) (KW), The Kinna-Wagner Selection Principle: For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 81(\(n\)).  

158

In every Hilbert space \(H\), if the closed unit ball is sequentially compact, then \(H\) has an orthonormal basis.

192

\(EP\) sets: For every set \(A\) there is a projective set \(X\) and a function from \(X\) onto \(A\).

Historical background: Brunner has shown that in this model\(A\) is a Hilbert space in which the unit ball is sequentially compact, but\(A\) has no orthonormal basis (158 is false).

Back