Fraenkel \(\cal N43\): Brunner's Model II | Back to this models page

Description: The set of atoms \(A=\bigcup\{P_n: n\in\omega\}\), where \(|P_n|=n+1\) for each \(n\in\omega\) and the \(P_n\)'s arepairwise disjoint

When the book was first being written, only the following form classes were known to be true in this model:

Form Howard-Rubin Number Statement
6

\(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable  family  of denumerable subsets of \({\Bbb R}\) is denumerable.

37

Lebesgue measure is countably additive.

91

\(PW\):  The power set of a well ordered set can be well ordered.

130

\({\cal P}(\Bbb R)\) is well orderable.

191

\(SVC\): There is a set \(S\) such that for every set \(a\), there is an ordinal \(\alpha\) and a function from \(S\times\alpha\) onto \(a\).

273

There is a subset of \({\Bbb R}\) which is not Borel.

305

There are \(2^{\aleph_0}\) Vitali equivalence classes. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in{\Bbb Q})(x-y=q)\).). \ac{Kanovei} \cite{1991}.

309

The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).

313

\(\Bbb Z\) (the set of integers under addition) is amenable.  (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).)

361

In \(\Bbb R\), the union of a denumerable number of analytic sets is analytic. G. Moore [1982], pp 181 and 325.

363

There are exactly \(2^{\aleph_0}\) Borel sets in \(\Bbb R\). G. Moore [1982], p 325.

368

The set of all denumerable subsets of \(\Bbb R\) has power \(2^{\aleph_0}\).

369

If \(\Bbb R\) is partitioned into two sets, at least one of them has cardinality \(2^{\aleph_0}\).

When the book was first being written, only the following form classes were known to be false in this model:

Form Howard-Rubin Number Statement
64

\(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.)

67

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

80

\(C(\aleph_{0},2)\):  Every denumerable set of  pairs has  a  choice function.

344

If \((E_i)_{i\in I}\) is a family of non-empty sets, then there is a family \((U_i)_{i\in I}\) such that \(\forall i\in I\), \(U_i\) is an ultrafilter on \(E_i\).

Historical background: \(\cal G\) is the group of all permutations \(\phi\), on\(A\) that \(\phi(P_n)=P_n\), for each \(n\in\omega\). \(S\) is the set of allsubsets, \(E\), of \(A\) such that \(\sup\{|E\cap P_n|: n\in\omega\}\) isfinite. Brunner proves that if \(X=\prod\{P_n: n\in\omega\}\) and \(F\) is anultrafilter on \(\omega\), then the ultraproduct \(X/F\) is amorphous (form 64is false) even though every Dedekind finite subset of \(X\) is finite. It isshown in Note 122 that both \(C(\aleph_0, 2)\) (80) and \(MC(\infty,\infty)\)(67) are false.

Back