Fraenkel \(\cal N31\): Läuchli's Model IV | Back to this models page

Description: The set \(A\) is denumerable

When the book was first being written, only the following form classes were known to be true in this model:

Form Howard-Rubin Number Statement
6

\(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable  family  of denumerable subsets of \({\Bbb R}\) is denumerable.

37

Lebesgue measure is countably additive.

91

\(PW\):  The power set of a well ordered set can be well ordered.

130

\({\cal P}(\Bbb R)\) is well orderable.

191

\(SVC\): There is a set \(S\) such that for every set \(a\), there is an ordinal \(\alpha\) and a function from \(S\times\alpha\) onto \(a\).

273

There is a subset of \({\Bbb R}\) which is not Borel.

305

There are \(2^{\aleph_0}\) Vitali equivalence classes. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in{\Bbb Q})(x-y=q)\).). \ac{Kanovei} \cite{1991}.

309

The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).

313

\(\Bbb Z\) (the set of integers under addition) is amenable.  (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).)

361

In \(\Bbb R\), the union of a denumerable number of analytic sets is analytic. G. Moore [1982], pp 181 and 325.

363

There are exactly \(2^{\aleph_0}\) Borel sets in \(\Bbb R\). G. Moore [1982], p 325.

368

The set of all denumerable subsets of \(\Bbb R\) has power \(2^{\aleph_0}\).

369

If \(\Bbb R\) is partitioned into two sets, at least one of them has cardinality \(2^{\aleph_0}\).

When the book was first being written, only the following form classes were known to be false in this model:

Form Howard-Rubin Number Statement
15

\(KW(\infty,\infty)\) (KW), The Kinna-Wagner Selection Principle: For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 81(\(n\)).  

241

Every algebraic closure of \(\Bbb Q\) has a real closed subfield.

243

Every  principal ideal domain is a unique factorization domain.

244

Every principal ideal domain has a maximal ideal.

Historical background: A field, \(F\)is constructed with base set \(A\) which is isomorphic to the algebraicclosure of \(\Bbb Q\). \(\cal G\) is the set of all permutations on \(A\) thatare automorphisms on \(F\). \(S\) is the set of all finite subsets of \(A\).L\"auchli proves that in this model, \(F\) has no real closed subfield so241 is false. Also, Hodges proves that if \(R\) is the ring of integers in\(F\), then \(R\) is a principal ideal domain that is not a uniquefactorization domain and has no maximal ideal (243 and 244 are false).

Back