Fraenkel \(\cal N13\): L\"auchli/Jech Model | Back to this models page

Description: \(A = B_1\cup B_2\), where \(B_1=\bigcup\{A_{j1} : j\in\omega\}\), and \(B_2 = \bigcup\{A_{j2} :j\in\omega\}\), and each \(A_{ji}\) is a 6-element set

When the book was first being written, only the following form classes were known to be true in this model:

Form Howard-Rubin Number Statement
6

\(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable  family  of denumerable subsets of \({\Bbb R}\) is denumerable.

37

Lebesgue measure is countably additive.

91

\(PW\):  The power set of a well ordered set can be well ordered.

130

\({\cal P}(\Bbb R)\) is well orderable.

191

\(SVC\): There is a set \(S\) such that for every set \(a\), there is an ordinal \(\alpha\) and a function from \(S\times\alpha\) onto \(a\).

273

There is a subset of \({\Bbb R}\) which is not Borel.

305

There are \(2^{\aleph_0}\) Vitali equivalence classes. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in{\Bbb Q})(x-y=q)\).). \ac{Kanovei} \cite{1991}.

309

The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\).

313

\(\Bbb Z\) (the set of integers under addition) is amenable.  (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).)

361

In \(\Bbb R\), the union of a denumerable number of analytic sets is analytic. G. Moore [1982], pp 181 and 325.

363

There are exactly \(2^{\aleph_0}\) Borel sets in \(\Bbb R\). G. Moore [1982], p 325.

368

The set of all denumerable subsets of \(\Bbb R\) has power \(2^{\aleph_0}\).

369

If \(\Bbb R\) is partitioned into two sets, at least one of them has cardinality \(2^{\aleph_0}\).

When the book was first being written, only the following form classes were known to be false in this model:

Form Howard-Rubin Number Statement
9

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

15

\(KW(\infty,\infty)\) (KW), The Kinna-Wagner Selection Principle: For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 81(\(n\)).  

235

If \(V\) is a vector space and \(B_{1}\) and \(B_{2}\) are bases for \(V\) then \(|B_{1}|\) and \(|B_{2}|\) are comparable.

Historical background: Consider thefollowing permutations on 6 elements: \(\alpha_1 = (12)(34)(5)(6)\),\(\beta_1 = (13)(24)(5)(6)\), \(\gamma_1 = (14)(23)(5)(6)\), \(\alpha_2 =\alpha_1\), \(\beta_2 = (12)(3)(4)(56)\), and \(\gamma_2 = (1)(2)(34)(56)\).For each \(j\), \(\alpha\) is the permutation on \(A_{j1}\cup A_{j2}\) that actslike \(\alpha_1\) on \(A_{j1}\) and \(\alpha_2\) on \(A_{j2}\); similarly for\(\beta\) and \(\gamma\). \(\cal G\) is the group of all permutations on \(A\)that preserves \(A_{j1}\) and \(A_{j2}\) and acts on \(A_{j1}\cup A_{j2}\) likethe identity, \(\alpha\), \(\beta\), or \(\gamma\). \(S\) is the set of all finitesubsets of \(A\). In \(\cal N13\), there are two isomorphic vector spaces, onewith \(B_1\) as a basis and the other with \(B_2\) as a basis, but \(|B_1|\ne|B_2|\) because \(B_1\) contains a countably infinite subset, but \(B_2\) doesnot. And in L\"auchli [1962] it is shown that \(|B_1|\) and\(|B_2|\) are incomparable.

Back