Fraenkel \(\cal N2(\hbox{LO})\): van Douwen's Model | Back to this models page
Description: This model is another variationof \(\cal N2\)
When the book was first being written, only the following form classes were known to be true in this model:
Form Howard-Rubin Number | Statement |
---|---|
6 | \(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable family of denumerable subsets of \({\Bbb R}\) is denumerable. |
37 | Lebesgue measure is countably additive. |
91 | \(PW\): The power set of a well ordered set can be well ordered. |
130 | \({\cal P}(\Bbb R)\) is well orderable. |
191 | \(SVC\): There is a set \(S\) such that for every set \(a\), there is an ordinal \(\alpha\) and a function from \(S\times\alpha\) onto \(a\). |
273 | There is a subset of \({\Bbb R}\) which is not Borel. |
305 | There are \(2^{\aleph_0}\) Vitali equivalence classes. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in{\Bbb Q})(x-y=q)\).). \ac{Kanovei} \cite{1991}. |
309 | The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\). |
313 | \(\Bbb Z\) (the set of integers under addition) is amenable. (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).) |
361 | In \(\Bbb R\), the union of a denumerable number of analytic sets is analytic. G. Moore [1982], pp 181 and 325. |
363 | There are exactly \(2^{\aleph_0}\) Borel sets in \(\Bbb R\). G. Moore [1982], p 325. |
368 | The set of all denumerable subsets of \(\Bbb R\) has power \(2^{\aleph_0}\). |
369 | If \(\Bbb R\) is partitioned into two sets, at least one of them has cardinality \(2^{\aleph_0}\). |
When the book was first being written, only the following form classes were known to be false in this model:
Form Howard-Rubin Number | Statement |
---|---|
15 | \(KW(\infty,\infty)\) (KW), The Kinna-Wagner Selection Principle: For every set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 81(\(n\)). |
62 | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
119 | van Douwen's choice principle: \(C(\aleph_{0}\),uniformly orderable with order type of the integers): Suppose \(\{ A_{i}: i\in\omega\}\) is a set and there is a function \(f\) such that for each \(i\in\omega,\ f(i)\) is an ordering of \(A_{i}\) of type \(\omega^{*}+\omega\) (the usual ordering of the integers), then \(\{A_{i}: i\in\omega\}\) has a choice function. |
323 | \(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
341 | Every Lindelöf metric space is second countable. |
344 | If \((E_i)_{i\in I}\) is a family of non-empty sets, then there is a family \((U_i)_{i\in I}\) such that \(\forall i\in I\), \(U_i\) is an ultrafilter on \(E_i\). |
Historical background: The set of atoms, \(A=\bigcup_{n\in\omega}B_n\) where the\(B_n\)'s are pairwise disjoint sets each of which is ordered like theintegers, \(\Bbb Z\). \(\cal G\) is the group of all permutations which fixeach \(B_n\) and also preserve the ordering on each \(B_n\), \(n\in\omega\). \(S\)is the set of all finite subsets of \(A\). In \(\cal N2(\hbox{LO})\), \(\{B_n:n\in\omega\}\) is a denumerable set of sets each of which is ordered like\(\Bbb Z\) which has no choice function, soForm 119 is false.\parIt is shown in De la Cruz, Hall, Howard, Keremedis, Rubin [2002a] that 341, Every Lindel\"of metric space is separable, isfalse in this model.
Back