We have the following indirect implication of form equivalence classes:

174-alpha \(\Rightarrow\) 199(\(n\))
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
174-alpha \(\Rightarrow\) 9 Horrors of topology without AC: A non-normal orderable space, van Douwen, E.K. 1985, Proc. Amer. Math. Soc.
note-49
9 \(\Rightarrow\) 13 clear
13 \(\Rightarrow\) 199(\(n\)) clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
174-alpha:

\(RM1,\aleph_{\alpha }\): The representation theorem for multi-algebras with \(\aleph_{\alpha }\) unary operations:  Assume \((A,F)\) is  a  multi-algebra  with \(\aleph_{\alpha }\) unary operations (and no other operations). Then  there  is  an  algebra \((B,G)\)  with \(\aleph_{\alpha }\) unary operations and an equivalence relation \(E\) on \(B\) such that \((B/E,G/E)\) and \((A,F)\) are isomorphic multi-algebras.

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

13:

Every Dedekind finite subset of \({\Bbb R}\) is finite.

199(\(n\)):

(For \(n\in\omega-\{0,1\}\)) If all \(\varSigma^{1}_{n}\), Dedekind finite subsets of \({}^{\omega }\omega\) are finite, then all \(\varPi^1_n\) Dedekind finite subsets of \({}^{\omega} \omega\) are finite.

Comment:

Back