We have the following indirect implication of form equivalence classes:

135 \(\Rightarrow\) 135
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
135 \(\Rightarrow\) 135

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
135:

If \(X\) is a \(T_2\) space with at least two points and \(X^{Y}\) is hereditarily metacompact then \(Y\) is  countable. (A space is metacompact if every open cover has an open point finite refinement. If \(B\) and \(B'\) are covers of a space \(X\), then \(B'\) is a refinement of \(B\) if \((\forall x\in B')(\exists y\in B)(x\subseteq y)\). \(B\) is point finite if \((\forall t\in X)\) there are only finitely many \(x\in B\) such that \(t\in x\).) van Douwen [1980]

135:

If \(X\) is a \(T_2\) space with at least two points and \(X^{Y}\) is hereditarily metacompact then \(Y\) is  countable. (A space is metacompact if every open cover has an open point finite refinement. If \(B\) and \(B'\) are covers of a space \(X\), then \(B'\) is a refinement of \(B\) if \((\forall x\in B')(\exists y\in B)(x\subseteq y)\). \(B\) is point finite if \((\forall t\in X)\) there are only finitely many \(x\in B\) such that \(t\in x\).) van Douwen [1980]

Comment:

Back