We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 101 \(\Rightarrow\) 101 |
Sur une proposition qui entraine l'existence des ensembles non mesurables, Sierpi'nski, W. 1947, Fund. Math. |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 101: | Partition Principle: If \(S\) is a partition of \(M\), then \(S \precsim M\). |
| 101: | Partition Principle: If \(S\) is a partition of \(M\), then \(S \precsim M\). |
Comment: