We have the following indirect implication of form equivalence classes:

317 \(\Rightarrow\) 343
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
317 \(\Rightarrow\) 14 Limitations on the Fraenkel-Mostowski method of independence proofs, Howard, P. 1973, J. Symbolic Logic
14 \(\Rightarrow\) 123 Variants of Rado's selection lemma and their applications, Rav, Y. 1977, Math. Nachr.
123 \(\Rightarrow\) 331 Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal
331 \(\Rightarrow\) 332 Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal
332 \(\Rightarrow\) 343 Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
317:

Weak Sikorski Theorem:  If \(B\) is a complete, well orderable Boolean algebra and \(f\) is a homomorphism of the Boolean algebra \(A'\) into \(B\) where \(A'\) is a subalgebra of the Boolean algebra \(A\), then \(f\) can be extended to a homomorphism of \(A\) into \(B\).

14:

BPI: Every Boolean algebra has a prime ideal.

123:

\(SPI^*\): Uniform weak ultrafilter principle: For each family \(F\) of infinite sets \(\exists f\) such that \(\forall x\in F\), \(f(x)\) is a non-principal ultrafilter on \(x\).

331:

If \((X_i)_{i\in I}\) is a family of compact non-empty topological spaces then there is a family \((F_i)_{i\in I}\) such that \(\forall i\in I\), \(F_i\) is an irreducible closed subset of \(X_i\).

332:  

A product of non-empty compact sober topological spaces is non-empty.

343:

A product of non-empty, compact \(T_2\) topological spaces is non-empty.

Comment:

Back