We have the following indirect implication of form equivalence classes:

359 \(\Rightarrow\) 288-n
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
359 \(\Rightarrow\) 20 clear
20 \(\Rightarrow\) 21 clear
21 \(\Rightarrow\) 23 Zermelo's Axiom of Choice, Moore, [1982]
23 \(\Rightarrow\) 27 clear
27 \(\Rightarrow\) 31 clear
31 \(\Rightarrow\) 32 L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat.
32 \(\Rightarrow\) 10 clear
10 \(\Rightarrow\) 288-n clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
359:

If \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families  of pairwise disjoint sets and \( |A_{x}| \le |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| \le |\bigcup_{x\in S} B_{x}|\).

20:

If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in  S\}\) are families  of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8).

21:

If \(S\) is well ordered, \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets, and \(|A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}|= |\bigcup_{x\in S} B_{x}|\). G\.

23:

\((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\).

27:

\((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The  union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36.

31:

\(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem:  The union of a denumerable set of denumerable sets is denumerable.

32:

\(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets  has a choice function.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

288-n:

If \(n\in\omega-\{0,1\}\), \(C(\aleph_0,n)\): Every denumerable set of \(n\)-element sets has a choice function.

Comment:

Back