We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
23 \(\Rightarrow\) 27 | clear |
27 \(\Rightarrow\) 31 | clear |
31 \(\Rightarrow\) 6 | clear |
6 \(\Rightarrow\) 5 |
L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
23: | \((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\). |
27: | \((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36. |
31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
6: | \(UT(\aleph_0,\aleph_0,\aleph_0,\Bbb R)\): The union of a denumerable family of denumerable subsets of \({\Bbb R}\) is denumerable. |
5: | \(C(\aleph_0,\aleph_0,\Bbb R)\): Every denumerable set of non-empty denumerable subsets of \({\Bbb R}\) has a choice function. |
Comment: