We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
29 \(\Rightarrow\) 27 |
Unions of well-ordered sets, Howard, P. 1994, J. Austral. Math. Soc. Ser. A. |
27 \(\Rightarrow\) 31 | clear |
31 \(\Rightarrow\) 209 | note-72 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
29: | If \(|S| = \aleph_{0}\) and \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets and \(|A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup^{}_{x\in S} A_{x}| = |\bigcup^{}_{x\in S} B_{x}|\). Moore, G. [1982], p 324. |
27: | \((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36. |
31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
209: | There is an ordinal \(\alpha\) such that for all \(X\), if \(X\) is a denumerable union of denumerable sets then \({\cal P}(X)\) cannot be partitioned into \(\aleph_{\alpha}\) non-empty sets. |
Comment: