We have the following indirect implication of form equivalence classes:

29 \(\Rightarrow\) 358
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
29 \(\Rightarrow\) 27 Unions of well-ordered sets, Howard, P. 1994, J. Austral. Math. Soc. Ser. A.
27 \(\Rightarrow\) 31 clear
31 \(\Rightarrow\) 32 L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat.
32 \(\Rightarrow\) 10 clear
10 \(\Rightarrow\) 358 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
29:  If \(|S| = \aleph_{0}\) and \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets and \(|A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup^{}_{x\in S} A_{x}| = |\bigcup^{}_{x\in S} B_{x}|\). Moore, G. [1982], p 324.

27:

\((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The  union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36.

31:

\(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem:  The union of a denumerable set of denumerable sets is denumerable.

32:

\(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets  has a choice function.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

358:

\(KW(\aleph_0,<\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of finite sets: For every denumerable set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).

Comment:

Back