We have the following indirect implication of form equivalence classes:

286 \(\Rightarrow\) 194
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
286 \(\Rightarrow\) 40 S´eminaire d’Analyse 1992, Morillon, 1991b,
40 \(\Rightarrow\) 39 clear
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 16 clear
16 \(\Rightarrow\) 194 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
286:

Extended Krein-Milman Theorem:  Let K be a quasicompact (sometimes called convex-compact), convex subset of a locally convex topological vector space, then K has an extreme point. H. Rubin/J. Rubin [1985], p. 177-178.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

16:

\(C(\aleph_{0},\le 2^{\aleph_{0}})\):  Every denumerable collection of non-empty sets  each with power \(\le  2^{\aleph_{0}}\) has a choice function.

194:

\(C(\varPi^1_2)\) or \(AC(\varPi^1_2)\): If \(P\in \omega\times{}^{\omega}\omega\), \(P\) has domain \(\omega\), and \(P\) is in \(\varPi^1_2\), then there is a sequence of elements \(\langle x_{k}: k\in\omega\rangle\) of \({}^{\omega}\omega\) with \(\langle k,x_{k}\rangle \in P\) for all \(k\in\omega\). Kanovei [1979].

Comment:

Back