We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
113 \(\Rightarrow\) 8 |
Tychonoff's theorem implies AC, Kelley, J.L. 1950, Fund. Math. Products of compact spaces in the least permutation model, Brunner, N. 1985a, Z. Math. Logik Grundlagen Math. |
8 \(\Rightarrow\) 29 | Zermelo's Axiom of Choice, Moore, 1982, page 324 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
113: | Tychonoff's Compactness Theorem for Countably Many Spaces: The product of a countable set of compact spaces is compact. |
8: | \(C(\aleph_{0},\infty)\): |
29: | If \(|S| = \aleph_{0}\) and \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets and \(|A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup^{}_{x\in S} A_{x}| = |\bigcup^{}_{x\in S} B_{x}|\). Moore, G. [1982], p 324. |
Comment: