We have the following indirect implication of form equivalence classes:

101 \(\Rightarrow\) 421
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
101 \(\Rightarrow\) 40 On some weak forms of the axiom of choice in set theory, Pelc, A. 1978, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
40 \(\Rightarrow\) 39 clear
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 421 Unions and the axiom of choice, De-la-Cruz-Hall-Howard-Keremedis-Rubin-2002B[2002B], Math. Logic Quart.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
101:

Partition Principle:  If \(S\) is a partition of \(M\), then \(S \precsim M\).

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

421:   \(UT(\aleph_0,WO,WO)\): The union of a denumerable set of well orderable sets can be well ordered.

Comment:

Back