We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
20 \(\Rightarrow\) 101 |
Partition principles and infinite sums of cardinal numbers, Higasikawa, M. 1995, Notre Dame J. Formal Logic |
101 \(\Rightarrow\) 40 |
On some weak forms of the axiom of choice in set theory, Pelc, A. 1978, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
40 \(\Rightarrow\) 39 | clear |
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 9 | Was sind und was sollen die Zollen?, Dedekind, [1888] |
9 \(\Rightarrow\) 84 |
Definitions of finite, Howard, P. 1989, Fund. Math. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
20: | If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in S\}\) are families of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8). |
101: | Partition Principle: If \(S\) is a partition of \(M\), then \(S \precsim M\). |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
84: | \(E(II,III)\) (Howard/Yorke [1989]): \((\forall x)(x\) is \(T\)-finite if and only if \(\cal P(x)\) is Dedekind finite). |
Comment: