We have the following indirect implication of form equivalence classes:

20 \(\Rightarrow\) 124
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
20 \(\Rightarrow\) 101 Partition principles and infinite sums of cardinal numbers, Higasikawa, M. 1995, Notre Dame J. Formal Logic
101 \(\Rightarrow\) 40 On some weak forms of the axiom of choice in set theory, Pelc, A. 1978, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
40 \(\Rightarrow\) 39 clear
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 9 Was sind und was sollen die Zollen?, Dedekind, [1888]
9 \(\Rightarrow\) 17 The independence of Ramsey's theorem, Kleinberg, E.M. 1969, J. Symbolic Logic
17 \(\Rightarrow\) 124 Hilbertraume mit amorphen Basen (English summary), Brunner, N. 1984a, Compositio Math.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
20:

If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in  S\}\) are families  of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8).

101:

Partition Principle:  If \(S\) is a partition of \(M\), then \(S \precsim M\).

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

17:

Ramsey's Theorem I: If \(A\) is an infinite set and the family of all 2 element subsets of \(A\) is partitioned into 2 sets \(X\) and \(Y\), then there is an infinite subset \(B\subseteq A\) such that all 2 element subsets of \(B\) belong to \(X\) or all 2 element subsets of \(B\) belong to \(Y\). (Also, see Form 325.), Jech [1973b], p 164 prob 11.20.

124:

Every operator on a Hilbert space with an amorphous base is the direct sum of a finite matrix and  a  scalar operator.  (A set is amorphous if it is not the union of two disjoint infinite sets.)

Comment:

Back