We have the following indirect implication of form equivalence classes:

101 \(\Rightarrow\) 154
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
101 \(\Rightarrow\) 40 On some weak forms of the axiom of choice in set theory, Pelc, A. 1978, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
40 \(\Rightarrow\) 43 Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc.
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
43 \(\Rightarrow\) 154 Kategoriesatze und multiples Auswahlaxiom, Brunner, N. 1983c, Z. Math. Logik Grundlagen Math.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
101:

Partition Principle:  If \(S\) is a partition of \(M\), then \(S \precsim M\).

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

154:

Tychonoff's Compactness Theorem for Countably Many \(T_2\) Spaces: The product of countably many \(T_2\) compact spaces is compact.

Comment:

Back