We have the following indirect implication of form equivalence classes:

101 \(\Rightarrow\) 411
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
101 \(\Rightarrow\) 40 On some weak forms of the axiom of choice in set theory, Pelc, A. 1978, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
40 \(\Rightarrow\) 43 Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc.
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
43 \(\Rightarrow\) 411 Dependent Choice and Weak Compactness, Delhomme-Morillon-2000[2000], Notre Dame J. Formal Logic

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
101:

Partition Principle:  If \(S\) is a partition of \(M\), then \(S \precsim M\).

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

411:

RCuc (Reflexive Compactness for uniformly convex Banach spaces): The closed unit ball of a uniformly convex Banach space is compact for the weak topology.

Comment:

Back