We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
101 \(\Rightarrow\) 40 |
On some weak forms of the axiom of choice in set theory, Pelc, A. 1978, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
40 \(\Rightarrow\) 43 |
Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc. On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
43 \(\Rightarrow\) 77 | The Axiom of Choice, Jech, 1973b, page 23 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
101: | Partition Principle: If \(S\) is a partition of \(M\), then \(S \precsim M\). |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
77: | A linear ordering of a set \(P\) is a well ordering if and only if \(P\) has no infinite descending sequences. Jech [1973b], p 23. |
Comment: