We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
202 \(\Rightarrow\) 40 | clear |
40 \(\Rightarrow\) 43 |
Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc. On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
43 \(\Rightarrow\) 339 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
202: | \(C(LO,\infty)\): Every linearly ordered family of non-empty sets has a choice function. |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
339: | Martin's Axiom \((\aleph_{0})\): Whenever \((P\le)\) is a non-empty, ccc quasi-order (ccc means every anti-chain is countable) and \({\cal D}\) is a family of \(\le\aleph_0\) dense subsets of \(P\), then there is a \({\cal D}\) generic filter \(G\) in \(P\). |
Comment: