We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
20 \(\Rightarrow\) 101 |
Partition principles and infinite sums of cardinal numbers, Higasikawa, M. 1995, Notre Dame J. Formal Logic |
101 \(\Rightarrow\) 40 |
On some weak forms of the axiom of choice in set theory, Pelc, A. 1978, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
40 \(\Rightarrow\) 43 |
Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc. On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
43 \(\Rightarrow\) 243 | A First Course in Abstract Algebra (4th edition), Fraleigh, 1989, pages 333-336 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
20: | If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in S\}\) are families of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8). |
101: | Partition Principle: If \(S\) is a partition of \(M\), then \(S \precsim M\). |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
243: | Every principal ideal domain is a unique factorization domain. |
Comment: