We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
86-alpha \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 29 | Zermelo's Axiom of Choice, Moore, 1982, page 324 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
86-alpha: | \(C(\aleph_{\alpha},\infty)\): If \(X\) is a set of non-empty sets such that \(|X| = \aleph_{\alpha }\), then \(X\) has a choice function. |
8: | \(C(\aleph_{0},\infty)\): |
29: | If \(|S| = \aleph_{0}\) and \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets and \(|A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup^{}_{x\in S} A_{x}| = |\bigcup^{}_{x\in S} B_{x}|\). Moore, G. [1982], p 324. |
Comment: