We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
174-alpha \(\Rightarrow\) 43 |
"Representing multi-algebras by algebras, the axiom of choice and the axiom of dependent choice", Howard, P. 1981, Algebra Universalis |
43 \(\Rightarrow\) 339 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
174-alpha: | \(RM1,\aleph_{\alpha }\): The representation theorem for multi-algebras with \(\aleph_{\alpha }\) unary operations: Assume \((A,F)\) is a multi-algebra with \(\aleph_{\alpha }\) unary operations (and no other operations). Then there is an algebra \((B,G)\) with \(\aleph_{\alpha }\) unary operations and an equivalence relation \(E\) on \(B\) such that \((B/E,G/E)\) and \((A,F)\) are isomorphic multi-algebras. |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
339: | Martin's Axiom \((\aleph_{0})\): Whenever \((P\le)\) is a non-empty, ccc quasi-order (ccc means every anti-chain is countable) and \({\cal D}\) is a family of \(\le\aleph_0\) dense subsets of \(P\), then there is a \({\cal D}\) generic filter \(G\) in \(P\). |
Comment: