We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
123 \(\Rightarrow\) 62 |
Two model theoretic ideas in independence proofs, Pincus, D. 1976, Fund. Math. |
62 \(\Rightarrow\) 10 | clear |
10 \(\Rightarrow\) 288-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
123: | \(SPI^*\): Uniform weak ultrafilter principle: For each family \(F\) of infinite sets \(\exists f\) such that \(\forall x\in F\), \(f(x)\) is a non-principal ultrafilter on \(x\). |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
288-n: | If \(n\in\omega-\{0,1\}\), \(C(\aleph_0,n)\): Every denumerable set of \(n\)-element sets has a choice function. |
Comment: