We have the following indirect implication of form equivalence classes:

123 \(\Rightarrow\) 64
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
123 \(\Rightarrow\) 62 Two model theoretic ideas in independence proofs, Pincus, D. 1976, Fund. Math.
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 11 clear
11 \(\Rightarrow\) 12 clear
12 \(\Rightarrow\) 336-n clear
336-n \(\Rightarrow\) 64 Weak choice principles, De la Cruz, O. 1998a, Proc. Amer. Math. Soc.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
123:

\(SPI^*\): Uniform weak ultrafilter principle: For each family \(F\) of infinite sets \(\exists f\) such that \(\forall x\in F\), \(f(x)\) is a non-principal ultrafilter on \(x\).

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

11:

A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\), \(A\) has an infinite subset \(B\) such that for every \(n\in\omega\), \(n>0\), the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco [1998b]

12:

A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\) and every \(n\in\omega\), there is an infinite subset \(B\) of \(A\) such the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco} [1998b]

336-n:

(For \(n\in\omega\), \(n\ge 2\).)  For every infinite set \(X\), there is an infinite \(Y \subseteq X\) such that the set of all \(n\)-element subsets of \(Y\) has a choice function.

64:

\(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.)

Comment:

Back