We have the following indirect implication of form equivalence classes:

408 \(\Rightarrow\) 336-n
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
408 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 11 clear
11 \(\Rightarrow\) 12 clear
12 \(\Rightarrow\) 336-n clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
408:

If \(\{f_i: i\in I\}\) is a family of functions such that for each \(i\in I\), \(f_i\subseteq E\times W\), where \(E\) and \(W\) are non-empty sets, and \(\cal B\) is a filter base on \(I\) such that

  1. For all \(B\in\cal B\) and all finite \(F\subseteq E\) there is an \(i\in I\) such that \(f_i\) is defined on \(F\), and
  2. For all \(B \in\cal B\) and all finite \(F\subseteq E\) there exist at most finitely many functions on \(F\) which are restrictions of the functions \(f_i\) with \(i\in I\),  
then there is a function \(f\) with domain \(E\) such that for each finite \(F\subseteq E\) and each \(B\in\cal B\) there is an \(i\in I\) such that \(f|F = f_i|F\).

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

11:

A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\), \(A\) has an infinite subset \(B\) such that for every \(n\in\omega\), \(n>0\), the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco [1998b]

12:

A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\) and every \(n\in\omega\), there is an infinite subset \(B\) of \(A\) such the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco} [1998b]

336-n:

(For \(n\in\omega\), \(n\ge 2\).)  For every infinite set \(X\), there is an infinite \(Y \subseteq X\) such that the set of all \(n\)-element subsets of \(Y\) has a choice function.

Comment:

Back