We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
409 \(\Rightarrow\) 62 |
Short proof of a theorem of Rado on graphs, Foster, B. L. 1964, Proc. Amer. Math. Soc. note-152 |
62 \(\Rightarrow\) 146 |
The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic note-26 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
409: | Suppose \((G,\Gamma)\) is a locally finite graph (i.e. \(G\) is a non-empty set and \(\Gamma\) is a function from \(G\) to \(\cal P(G)\) such that for each \(x\in G\), \(\Gamma(x)\) and \(\Gamma^{-1}\{x\}\) are finite), \(K\) is a finite set of integers, and \(T\) is a function mapping subsets of \(K\) into subsets of \(K\). If for each finite subgraph \((A,\Gamma_A)\) there is a function \(\psi\) such that for each \(x\in A\), \(\psi(x)\in T(\psi[\Gamma_A(x)])\), then there is a function \(\phi\) such that for all \(x\in G\), \(\phi(x)\in T(\phi[\Gamma(x)])\). |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
146: | \(A(F,A1)\): For every \(T_2\) topological space \((X,T)\), if \(X\) is a continuous finite to one image of an A1 space then \((X,T)\) is an A1 space. (\((X,T)\) is A1 means if \(U \subseteq T\) covers \(X\) then \(\exists f : X\rightarrow U\) such that \((\forall x\in X) (x\in f(x)).)\) |
Comment: