We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
68 \(\Rightarrow\) 62 |
Subgroups of a free group and the axiom of choice, Howard, P. 1985, J. Symbolic Logic |
62 \(\Rightarrow\) 102 | The Axiom of Choice, Jech, 1973b, page 162 problem 11.12 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
68: | Nielsen-Schreier Theorem: Every subgroup of a free group is free. Jech [1973b], p 12. |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
102: | For all Dedekind finite cardinals \(p\) and \(q\), if \(p^{2} = q^{2}\) then \(p = q\). Jech [1973b], p 162 prob 11.12. |
Comment: