We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
66 \(\Rightarrow\) 67 |
Existence of a basis implies the axiom of choice, Blass, A. 1984a, Contemporary Mathematics |
67 \(\Rightarrow\) 147 |
The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic note-26 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
66: | Every vector space over a field has a basis. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
147: | \(A(D2)\): Every \(T_2\) topological space \((X,T)\) can be covered by a well ordered family of discrete sets. |
Comment: