We have the following indirect implication of form equivalence classes:

149 \(\Rightarrow\) 287
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
149 \(\Rightarrow\) 67 The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic
note-26
67 \(\Rightarrow\) 52 Independence of the prime ideal theorem from the Hahn Banach theorem, Pincus, D. 1972b, Bull. Amer. Math. Soc.
52 \(\Rightarrow\) 287 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
149:

\(A(F)\):  Every \(T_2\) topological space is a continuous, finite to one image of an \(A1\) space.

67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

52:

Hahn-Banach Theorem:  If \(V\) is a real vector space and \(p: V \rightarrow {\Bbb R}\) satisfies \(p(x+y) \le p(x) + p(y)\) and \((\forall t > 0)( p(tx) = tp(x) )\) and \(S\) is a subspace of \(V\) and \(f:S \rightarrow {\Bbb R}\) is linear and satisfies \((\forall  x \in S)( f(x) \le  p(x) )\) then \(f\) can be extended to \(f^{*} : V \rightarrow {\Bbb R}\) such that \(f^{*}\) is linear and \((\forall x \in V)(f^{*}(x) \le p(x))\).

287:

The Hahn-Banach Theorem for Separable Normed Linear Spaces:  Assume \(V\) is a separable normed linear space and \(p :V \to \Bbb R\) satisfies \(p(x+y) \le p(x) + p(y)\) and \((\forall t \ge 0)(\forall x \in V)(p(tx) = tp(x))\) and assume \(f\) is a linear function from a subspace \(S\) of \(V\) into \(\Bbb R\) which satisfies \((\forall x \in S)(f(x) \le p(x))\), then \(f\) can be extended to \(f^* :V \to \Bbb R\) so that \(f^* \) is linear and \((\forall x \in V)(f^*(x) \le p(x))\).

Comment:

Back