We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
149 \(\Rightarrow\) 67 |
The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic note-26 |
67 \(\Rightarrow\) 232 |
Paracompactness of metric spaces and the axiom of choice, Howard, P. 2000a, Math. Logic Quart. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
149: | \(A(F)\): Every \(T_2\) topological space is a continuous, finite to one image of an \(A1\) space. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
232: | Every metric space \((X,d)\) has a \(\sigma\)-point finite base. |
Comment: