We have the following indirect implication of form equivalence classes:

149 \(\Rightarrow\) 292
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
149 \(\Rightarrow\) 67 The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic
note-26
67 \(\Rightarrow\) 292 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
149:

\(A(F)\):  Every \(T_2\) topological space is a continuous, finite to one image of an \(A1\) space.

67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

292:

\(MC(LO,\infty)\): For each linearly ordered family of non-empty sets \(X\), there is a function \(f\) such that for all \(x\in X\) \(f(x)\) is non-empty, finite subset of \(x\).

Comment:

Back