We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
28-p \(\Rightarrow\) 427 | clear |
427 \(\Rightarrow\) 67 | clear |
67 \(\Rightarrow\) 147 |
The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic note-26 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
28-p: | (Where \(p\) is a prime) AL20(\(\mathbb Z_p\)): Every vector space \(V\) over \(\mathbb Z_p\) has the property that every linearly independent subset can be extended to a basis. (\(\mathbb Z_p\) is the \(p\) element field.) Rubin, H./Rubin, J. [1985], p. 119, Statement AL20 |
427: | \(\exists F\) AL20(\(F\)): There is a field \(F\) such that every vector space \(V\) over \(F\) has the property that every independent subset of \(V\) can be extended to a basis. \ac{Bleicher} \cite{1964}, \ac{Rubin, H.\/Rubin, J \cite{1985, p.119, AL20}. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
147: | \(A(D2)\): Every \(T_2\) topological space \((X,T)\) can be covered by a well ordered family of discrete sets. |
Comment: