We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
149 \(\Rightarrow\) 67 |
The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic note-26 |
67 \(\Rightarrow\) 89 |
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
89 \(\Rightarrow\) 90 | The Axiom of Choice, Jech, 1973b, page 133 |
90 \(\Rightarrow\) 51 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
51 \(\Rightarrow\) 208 |
Choice and cofinal well-ordered subsets, Morris, D.B. 1969, Notices Amer. Math. Soc. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
149: | \(A(F)\): Every \(T_2\) topological space is a continuous, finite to one image of an \(A1\) space. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
89: | Antichain Principle: Every partially ordered set has a maximal antichain. Jech [1973b], p 133. |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
51: | Cofinality Principle: Every linear ordering has a cofinal sub well ordering. Sierpi\'nski [1918], p 117. |
208: | For all ordinals \(\alpha\), \(\aleph_{\alpha+1}\le 2^{\aleph_\alpha}\). |
Comment: