We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
426 \(\Rightarrow\) 8 |
On first and second countable spaces and the axiom of choice, Gutierres, G 2004, Topology and its Applications. |
8 \(\Rightarrow\) 16 | clear |
16 \(\Rightarrow\) 194 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
426: | If \((X,\cal T) \) is a first countable topological space and \((\cal B(x))_{x\in X}\) is a family such that for all \(x \in X\), \(\cal B(x)\) is a local base at \(x\), then there is a family \(( \cal V(x))_{x\in X}\) such that for every \(x \in X\), \(\cal V(x)\) is a countable local base at \(x\) and \(\cal V(x) \subseteq \cal B(x)\). |
8: | \(C(\aleph_{0},\infty)\): |
16: | \(C(\aleph_{0},\le 2^{\aleph_{0}})\): Every denumerable collection of non-empty sets each with power \(\le 2^{\aleph_{0}}\) has a choice function. |
194: | \(C(\varPi^1_2)\) or \(AC(\varPi^1_2)\): If \(P\in \omega\times{}^{\omega}\omega\), \(P\) has domain \(\omega\), and \(P\) is in \(\varPi^1_2\), then there is a sequence of elements \(\langle x_{k}: k\in\omega\rangle\) of \({}^{\omega}\omega\) with \(\langle k,x_{k}\rangle \in P\) for all \(k\in\omega\). Kanovei [1979]. |
Comment: