We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
147 \(\Rightarrow\) 91 |
The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic note-26 |
91 \(\Rightarrow\) 79 | clear |
79 \(\Rightarrow\) 94 | clear |
94 \(\Rightarrow\) 5 | clear |
5 \(\Rightarrow\) 38 |
Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
147: | \(A(D2)\): Every \(T_2\) topological space \((X,T)\) can be covered by a well ordered family of discrete sets. |
91: | \(PW\): The power set of a well ordered set can be well ordered. |
79: | \({\Bbb R}\) can be well ordered. Hilbert [1900], p 263. |
94: | \(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals has a choice function. Jech [1973b], p 148 prob 10.1. |
5: | \(C(\aleph_0,\aleph_0,\Bbb R)\): Every denumerable set of non-empty denumerable subsets of \({\Bbb R}\) has a choice function. |
38: | \({\Bbb R}\) is not the union of a countable family of countable sets. |
Comment: