We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
147 \(\Rightarrow\) 91 |
The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic note-26 |
91 \(\Rightarrow\) 145 |
P-Raüme and Auswahlaxiom, Brunner, N. 1984c, Rend. Circ. Mat. Palermo. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
147: | \(A(D2)\): Every \(T_2\) topological space \((X,T)\) can be covered by a well ordered family of discrete sets. |
91: | \(PW\): The power set of a well ordered set can be well ordered. |
145: | Compact \(P_0\)-spaces are Dedekind finite. (A \(P_0\)-space is a topological space in which the intersection of a countable collection of open sets is open.) |
Comment: