We have the following indirect implication of form equivalence classes:

147 \(\Rightarrow\) 305
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
147 \(\Rightarrow\) 91 The axiom of choice in topology, Brunner, N. 1983d, Notre Dame J. Formal Logic
note-26
91 \(\Rightarrow\) 305 Equivalents of the Axiom of Choice II, Rubin, 1985, theorem 5.7

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
147:

\(A(D2)\):  Every \(T_2\) topological space \((X,T)\) can be covered by a well ordered family of discrete sets.

91:

\(PW\):  The power set of a well ordered set can be well ordered.

305:

There are \(2^{\aleph_0}\) Vitali equivalence classes. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in{\Bbb Q})(x-y=q)\).). \ac{Kanovei} \cite{1991}.

Comment:

Back